Silicon Photonics: The Optical Spice Rack

October 3, 2013
Davis Auditorium
Speaker: Prof. Michal Lipson, School of Electrical and Computer Engineering, Cornell University


Silicon is evolving as a versatile photonic platform with multiple functionalities that can be seamlessly integrated. The tool box is rich starting from the ability to guide and amplify multiple wavelength sources at GHz bandwidths, to optomechanical MEMS and opto-fluidics devices. As an example of novel device capabilities, I will discuss the generation of strong optical forces in these ultra small light confining structures. We have recently shown that optical forces can enable controllable, static manipulation of photonic structures, an important step towards enabling recently proposed functionalities for optomechanical devices, such as self-aligning and optical corralling behaviour. These advances should enable future micro-optomechanical systems (MOMS) with novel and distinct functionalities.

Speaker Bio

Prof Michal Lipson received the B.S., M.S., and Ph.D. degrees in physics in the Technion Israel Institute of Technology, Haifa, Israel, in 1998. In December 1998, she joined the Department of Material Science and Engineering, Massachusetts Institute of Technology (MIT) as a Postdoctoral Associate. In 2001, she joined the School of Electrical and Computer Engineering, Cornell University, where she is currently the Given Foundation Professor of Engineering. Her research at Cornell involves novel on-chip nanophotonic devices. She is the inventor of over 15 patents regarding novel micron-size photonic structures for light manipulation. She is the author or coauthor of more than 200 papers in the major research journals in physics and optics. Dr. Lipson is a McArthur Fellow, a Fellow of IEEE and a Fellow of the Optical Society of America. She is the recipient of the National Science Foundation (NSF) CAREER Award, IBM Faculty Award and Blavatnik award, NY State Academy of Science.

500 W. 120th St., Mudd 1310, New York, NY 10027    212-854-3105               
©2014 Columbia University